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Abstract

Piston driven compaction waves in granular HMX are simulated with a two-
dimensional continuum mechanics code in which individual grains are re-
solved. The constitutive properties of the grains are modeled with a hydro-
static pressure and a simple elastic-plastic model for the shear stress. Param-
eters are chosen to correspond to inert HMX. For a tightly packed random
grain distribution (with initial porosity of 19%) we varied the piston veloc-
ity to obtain weak partly compacted waves and stronger fully compacted
waves. The average stress and wave speed are compatible with the porous
Hugoniot locus for uniaxial strain. However, the heterogeneities give rise to
stress concentrations, which lead to localized plastic flow. For weak waves,
plastic deformation is the dominant dissipative mechanism and leads to dis-
persed waves that spread out in time. In addition to dispersion, the granular
heterogeneities give rise to subgrain spatial variation in the thermodynamic
variables. The peaks in the temperature fluctuations, known as hot spots, are
in the range such that they are the critical factor for initiation sensitivity.
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1 Introduction

It has long been known that hot spots, localized spatial peaks in the tempera-
ture field, play a dominant role in the initiation of heterogeneous explosives [1].
Numerical simulations of shock initiation by Mader [2, Sec. 3.3] show that hot
spots generated by void collapse and impedance mismatches with impurities are
critical factors in determining initiation sensitivity. In addition, weak shocks can
desensitize an explosive by closing voids and thus decreasing the heterogeneities
and eliminating sources of hot spots; see for example [3, 4] and [2, pp. 178–183].

Despite the importance of hot spots, current burn models are based on only
bulk or spatially averaged thermodynamic variables. Models motivated by hot
spots, such as the growth and ignition model [5] or the JTF model [6], are largely
heuristic in nature. In effect, they use a sequence of reactions to simulate the ef-
fect of hot spots. The mass fraction of the reactant associated with hot spots is an
input parameter and not a dynamic variable. This limits their domain of applica-
bility. Bulk burn models can be effective for simulating the class of experiments in
which the hot-spot distribution is close to the distribution of the experiment used
to calibrate the model. Appropriately calibrated, bulk burn models have been suc-
cessful at reproducing reaction wave profiles in shock-to-detonation transitions
and in propagating detonation waves.

For weak stimuli, such as a low velocity impact that initiates a deflagration-
to-detonation transition (DDT), predictions based on bulk burn models are qual-
itatively correct but quantitatively accurate in only a very limited regime. A pre-
dictive burn model over a wide range of conditions requires a more accurate de-
scription of the underlying physics. This strongly suggests introducing additional
variables to characterize the hot-spot distribution and governing equations for their
dynamical evolution. The stumbling block in developing such an improved burn
model has been the lack of data. The spatial and temporal scales for hot spots is
set by the grain size, and typically these scales are well below the experimental
resolution of currently available diagnostic techniques. However, it is possible to
do numerical experiments of small regions with high resolution. These compu-
tations, called micro-mechanical simulations, apply continuum mechanics to the
meso-scale over which heterogenities and hot spots occur and are expected to be
statistically meaningful.

Just as physical measurements have experimental errors, numerical experi-
ments have uncertainties associated with the assumed constitutive properties of
the material. Of particular importance for studying hot spots are the dissipa-
tive mechanisms in the model. For prompt shock initiation, the dominant heating
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mechanism is from void collapse. Material strength is negligble and a hydrody-
namic model, as used in the simulation by Mader [2], suffices. At low pressures,
comparable to the yield strength, other dissipative mechanisms are possible [7],
such as plastic work, viscous heating in shear bands, and frictional heating at grain
boundaries or along closed cracks. The dominant dissipative mechanism is likely
to be application dependent.

Here we focus on compaction waves in granular explosives. This is of in-
terest for several reasons. Granular explosives are used as a model for damaged
explosives. Compared to solid explosives, the additional degree of freedom from
porosity leads to an increased sensitivity to initiation. Porosity under compressive
stress requires material strength. Even for weak waves, stress concentrations at the
contact between grains leads to localized plastic deformation and heating, which
gives rise to hot spots. The enhanced sensitivity of granular explosives to weak
compaction waves is observed in DDT tube experiments; see for example [8]. In
addition, compaction wave profiles from gas gun experiments [9] show evidence
of burning.

In order to understand the structure of piston driven compaction waves in
a granular material we have performed micro-mechanical simulations with the
COMADREJA code. This is a two-dimensional Eulerian code developed by
David Benson at the University of California, San Diego. A similar code called
RAVEN has been used previously to study sintering or dynamic compaction of
powdered metals [10, 11]. The 2-D calculations we present assume planar strain.

We use material properties and grain distribution corresponding to coarse HMX.
With a porosity of about 20%, the grains in 2-D are mostly in contact, roughly
speaking, a tightly packed random distribution. The piston velocity is varied from
200m/s to 1000m/s. The waves generated are nominally planar and range from
weak partly compacted waves to strong fully compacted waves. We find that the
mechanical wave properties, average pressure and wave velocity, closely corre-
spond to the values on the porous Hugoniot locus for uniaxial strain. For weak
waves, plastic deformation is the dominant dissipative mechanism and leads to
dispersed waves that spread out in time. In addition to dispersion, the granu-
lar heterogeneities give rise to subgrain spatial variation in the thermodynamic
variables. The temperature peaks or hot spots are in the range that would affect
ignition.
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Fluctuations are more sensitive than average quantities. They are affected by
mesh resolution, the numerical treatment of grain interfaces, and the dissipative
mechanisms giving rise to the wave profile. In addition, the pressure behind the
compaction waves is well below the bulk modulus. Consequently, the equation of
state (EOS) is stiff, and the stress is more sensitive to small variations in density
than to variations in temperature. We believe the computed trends in the temper-
ature variations are plausible, but there are uncertainties related to the simplified
constitutive model and limitations in mesh resolution.

The following is an outline of the paper. The constitutive model used to char-
acterize the HMX is specified in Section 2. This consists of a hydrostatic pressure
and a simple elastic-plastic model for the shear stress. For comparison purposes
the uniaxial strain Hugoniot for HMX is given in Section 3. The elastic-plastic
transition is accounted for in the Hugoniot locus. In Section 4 the setup for the
computations is discussed. Numerical results for compaction waves are presented
and analyzed in Section 5. In Section 6 we discuss the extent to which homog-
enized continuum models capture the structure of the micro-mechanical based
compaction wave profiles. A summary and conclusions on the effect of the gran-
ular heterogeneities on compaction waves are given in Section 7.

2 Constitutive Model

The material properties of HMX, for the purpose of this study, are described by
a hydrostatic equation of state and a simple strength model for the stress deviator.

2.1 Hydrostatic Equation of State

A Mie-Grüneisen EOS is used for the hydrodynamic component of the consti-
tutive model. It is based on the principal Hugoniot with a linearus–up relation and
a Grüneisen coefficient of the formΓ=V = constant, see Appendix I. Parameters
for the EOS are listed in Table 1 below. In the range of interest, up to� 10GPa,
this is nearly the same as the Hayes EOS calibrated for HMX in Ref. [12].

2.2 Strength Model

For simplicity the strength model assumes the material is isotropic. The stress
deviator is based on a constant shear modulus and a perfectly plastic, rate-independent
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c0 2.65 km=s Bulk sound speed
s 2.38 — Slope ofus–up relation
Γ=V 2.09 g=cm3 Grüneisen coefficient
ρ0 1.9 g=cm3 Initial density
Cv 1:0�10�3 (MJ/kg)/K Specific heat

Table 1: Parameters for hydrostatic equation of state.

von Mises yield condition. See Appendix II. Parameters for the strength model
are listed in Table 2 below.

G 10. GPa Shear modulus
Y 0.37 GPa Yield strength

Table 2: Parameters for strength model.

2.3 HMX Parameters

The key material parameters for HMX are listed in Table 3 below.
The shear strain energy is not included in the EOS. The maximum shear energy
is equivalent to a temperature rise of onlye=Cv = 1:2K, and to a thermal pressure
of only Γ

V e= 2:5� 10�3GPa. Thus, the effect of elastic shear strain energy is
negligible.

2.4 Additional Material Properties

HMX melts below the ignition temperature. At atmospheric pressure the melt-
ing temperature isT0

m = 520K. The melting temperature increases with pressure.
The temperature increase can be estimated based on the Kraut-Kennedy relation.
See [13, Sec. 5.3.2]

Tm = T0
m

�
1+C

∆V
V0

�
(1)

with C = 2(Γ0� 1
3). For the strongest compaction waves we consider, pres-

sure� 50kb, ∆V
V0

� 0:1, and the melting temperature increases to about 600K.
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Moduli
K 13.4 GPa Bulk modulus
G 10. GPa Shear modulus
E 24. GPa Youngs modulus
ν 0.2 — Poisson ratio

sound speed
cl 3.75 km=s Longitudinal sound speed
c0 2.65 km=s Bulk sound speed
cs 2.30 km=s Shear sound speed

Elastic limit
ε 0.018 — Strain
up 0.07 km=s Particle velocity
Uel 3.9 km=s Wave speed
σxx 0.52 GPa Stress
Y 0.37 GPa Yield strength
e 1:2�10�3 MJ/kg Maximum shear strain energy

Table 3: Material parameters for HMX.

The effect of the latent heat,Qm = 0:22MJ=kg, corresponds to a temperature of
∆T = Qm=Cv = 220K, and a thermal pressure ofΓ

V Qm= 0:46GPa. Since the reac-
tion rate is sensitive to temperature, latent heat has an important effect on ignition
due to weak stimuli such as compaction waves. The hydrostatic model in the code
accounts for the effects of latent heat on the temperature and on the thermal com-
ponent of the pressure. It is not refined enough to account for the small volume
change when the material melts.

Upon melting the yield strength and shear modulus vanish. As a result melting
limits the plastic work to be less thanCv(Tm�T0) = 0:25MJ=kg, where the initial
temperature isT0 = 300K. We note that the plastic work is comparable to the
latent heat of melting. The limit on the plastic work places a bound on the plastic
strain,εp < Cv(Tm�T0)=Y = 0:7. In addition, above melting the shear viscosity
decreases and lowers the shear heating. Only our later simulations have accounted
for the change in yield strength and shear modulus on melting. The effect of
melting on the tail of the temperature distribution will be discussed in more detail
later.

The constitutive model neglects several other material properties. In particular,

6



the grains are small crystals ofβ-phase HMX. The crystal structure is monoclinic.
The individual components of the elastic tensor have not yet been determined.
Single crystal wave profiles measured by Jerry Dicket al. [14, Fig. 34] show an
orientation dependence. In addition, the profiles show that the plastic wave has
a rise time of 50 to 100 ns. Thus, plasticity is rate dependent. For simplicity
the anisotropy and rate dependence of the plasticity are neglected. Also, the wave
profiles imply the yield strength is closer to 0:3GPa, which is 20% smaller than the
value in Table 2. In addition, just before melting HMX undergoes a polymorphic
phase transition from theβ-phase to theδ-phase. This effect is neglected.

Quasi-static compaction experiments indicate that the grains are brittle and
fracture [15, 16]. The constitutive model neglects fracture. Also neglected is
friction as the grains slide over one another. However, the simulations used a
shear viscosity with a coefficient of 310 Poise (0:031GPa�µs) below melting and
0.14 Poise above melting.1 In addition to plastic work and viscous shear work,
the calculations have a flux-limited artificial bulk viscosity (Christensen’s modi-
fication to the von Neumann-Richtmeyer form; see ref. [17]) for the dissipation
mechanisms.

Finally, the material is assumed to be inert. The simulations discussed here
are aimed at understanding the mechanical properties of compaction waves and
the fluctuations that can be expected from the granular heterogeneity. Later we
plan on studying the burn rate due to the hot spots.

3 Hugoniot Locus

The 1-D Hugoniot locus for uniaxial strain provides a point of comparison that
is helpful in understanding the effects of heterogeneities on compaction waves in
granular materials. To account for the porosity, the fluid equations must be sup-
plemented with the additional variable for the solid volume fractionφ. The sim-
plest description of a granular material is given by the Herrmann-Carrol-HoltP–α
model [18, 19]. (Note, the distensionα = 1=φ.) This consists of the conservation
equation for fluid flow of an elastic-plastic material

∂
∂t

0
@ ρ

ρu
ρE

1
A+

∂
∂x

0
@ ρu

ρu2+σxx

ρu(E+σxxV)

1
A=~0 ; (2)

1Values for shear viscosity suggested by Paul Conley, Univ. of Calif. San Diego.
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where the total specific energy isE = e+ 1
2u2, together with a constitutive relation

defining the component of the stress in the direction of wave propagationσxx and
a relation for the equilibrium volume fractionφ.

TheP–α model relates the average material pressure to the pressure of the pure
solid and the porosity. In the same spirit, we relate the average material stress to
the stress in the pure solid. This modification enables the porous Hugoniot locus
to converge to the solid Hugoniot locus in the limit as the porosity goes to zero.
In the simplified model the porous stress is assumed to be

σxx = φ � [Ps(Vs;e)+
4
3

Gεel] ; (3)

where the specific volume of the pure solid isVs = φ=ρ, the elastic strain is

εel = min
�

ln(Vs0=Vs);εY

�
; (4)

andεY = Y
2G is the strain on the yield surface. For simplicity, we assume that the

equilibrium volume fraction is given by

φ = 1� (1�φ0)exp(�Ps=Pc) ; (5)

wherePc is a characteristic pressure. The characteristic pressure is related to the
yield strength. A value ofPc = 0:1GPa gives about the right crush-up pressure for
HMX. Better fits to the equilibrium volume fraction can be based on data from
quasi-static compression experiments [15].

Steady state waves are determined by the Hugoniot equation

e�e0 = 0:5[σxx+(σxx)0] � (V0�V) (6)

together with the constitutive relations Eqs. (3)–(5). The Hugoniot loci for the
pure solid and a porous solid withφ = 0:81 are shown in Fig. 1. For the pure
solid, we note that plastic yield gives rise to a two-wave structure (elastic precursor
followed by plastic wave) for piston velocities from 70 to 400m/s. In this simple
1-D model, porosity leads to a lower sound speed and eliminates the two-wave
structure due to the elastic-plastic transition.

A numerical example of the two-wave structure is shown in Fig. 2. Since
the plastic strain is determined by rate independent plasticity, the plastic wave
corresponds to a shock. The artificial viscosity is chosen just large enough such
that the plastic wave profile is spread out over enough cells to avoid oscillations in
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Figure 1: Hugoniot loci. Solid black line is porous Hugoniot (φ = 0:81). Dotted red
line is fully compacted Hugoniot (φ = 1). Blue lines are pure solid Hugoniot; dashed line
corresponds to plastic wave following elastic precursor, and dotted line corresponds to
Rayleigh line for elastic precursor in the range of the two-wave structure.
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Figure 2: Stress profile for piston velocity of 200m/s att = 0:7µs. Symbols indicate
value at center of cells.

the plastic strain and hence in the stress. The same viscosity coefficients are used
for the 2-D simulations.

The temperature on the Hugoniot loci is shown in Fig. 3. For a given pressure,
the temperature on the porous Hugoniot locus is significantly larger than on the
pure solid Hugoniot locus because of the increased∆V due to the change in vol-
ume fraction. The induction time as a function of hot spot radius and temperature
can be computed based on an Arrhenius reaction rate [20]. With the parameters
for HMX given in Table 4 the induction times are shown in Fig. 4. If ignition
depended on the thermal properties of only the bulk material, then the two figures
combined would imply that a 70kb shock in the granular HMX (19% porosity)
would be needed to achieve a bulk temperature of 650K sufficient for prompt ig-
nition (induction time of less than 1µs) and that a much stronger shock would be
needed for solid HMX. We note that the granular material melts below the igni-
tion temperature. For the same temperature the solid would not have melted since
its Hugoniot pressure is higher leading to a higher melt temperature. The rate
constants for solid HMX are slower than those of liquid HMX, see [2, p. 218]
and [4].

It is important to note that a 3kb shock in granular HMX raises the bulk tem-
perature by only 22K. Despite this small temperature rise a delayed detonation
occurs in DDT tube experiments [8]. In contrast, negligible reaction results from
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Figure 3:Hugoniot loci and isentrope. Solid black line is porous Hugoniot (φ = 0:81);
change in slope around 650K is due to melting. Blue lines are pure solid Hugoniot.
Blue and black dotted lines are temperature on isentrope to same specific volume as on
corresponding Hugoniot loci.

Z 5:�1013 µs�1 Pre-exponential factor
Ta 2:5�104 K Activation temperature
Q 5. MJ/kg Heat release
κ 4:�10�10 kJ=(m �µs�K) Thermal conductivity
Cp 1:5�10�3 (MJ/kg)/K Specific heat
χ = κ

ρCp
1:4�10�7 (mm)2=µs Thermal diffusivity

Table 4: Parameters for HMX hot spots.

quasi-static compression to the same pressure. The micro-mechanical simulations
described below are aimed at determining the hot-spot distribution resulting from
compaction waves in a granular bed. For weak waves, plastic work from grain
distortion is expected to be a significant dissipative mechanism.

4 Numerical Model

For our simulations of compaction waves the granular bed consists of a rect-
angular region. The waves are driven by a planar piston moving from right to left.
Thus, the x-axis is the direction of wave propagation, and the y-axis is parallel to
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Figure 4:Contours of induction time as function of hot spot radius and hot spot temper-
ature (for ambient temperature of 300K).

the wave front.
The natural length scale for the bed is the grain size. Even though the wave

is nominally one-dimensional, to adequately describe the two dimensional effects
from the heterogeneities a minimum of about 10 grains are needed for the bed
width. Periodic top and bottom boundary conditions are used to minimize effects
from the boundaries parallel to the wave propagation direction. A bed length of
about 30 grains is used in order to give start-up transients a chance to die down
and achieve on average a steady wave profile. Thus, the granular bed has an aspect
ratio of about 3 to 1.

The overall size of the granular bed, roughly 30 grains by 10 grains, and the
available computing power then determines the resolution. The workstation we
are using for the calculations (SUN SPARC Ultra I, 140 Mhz, which has about the
same power as a 200 Mhz Pentium Pro PC) allows a resolution of about 15 cells
per grain diameter on a uniform mesh. Each simulation takes between a couple of
days and a week.
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4.1 Granular Distribution

The granular bed is chosen to have tightly packed, randomly distributed grains.
The grain packing algorithm has two stages. In the first stage an initial packing
is generated in which grains are allowed to overlap. The second stage is based
on a “molecular dynamics” approach where forces and torques arising from over-
laps are used to adjust the grain positions in order to eliminate overlaps. The
number and size distribution of grains is fixed at the beginning of the process,
and the size of the box is determined by the desired porosity. The starting con-
figuration is generated by randomly placing the grains, in order of decreasing
size, in the box. The only constraint applied is that the position of the center of
a newly introduced grain not be within the occupied volume of existing grains.
This corresponds roughly to having less than 50% initial overlap between pairs of
grains. The forces and torques between grains are assumed to be proportional to
the amount of overlap (volume or area) between neighboring grains. The resulting
grain displacement is calculated to diminish the sum of forces on each grain. The
grains are assumed to be rigid and their mass proportional to their size. Damping
is applied by restricting the displacement to� 10% of the diameter of the grain.
For the second stage, either the absolute linear dimensions of the box or the aspect
ratio of the linear dimensions of the box can be specified provided that the total
volume is preserved. Either fixed or periodic boundary conditions can be applied.
For circular grains a solid volume fraction of 0.81 or a porosity of 19% is readily
obtained. For comparison, a regular array of closed packed circles has a porosity
of 1� π

2
p

3
= 9:3%.

Calculations were done with two grain size distributions. Initially a log-
normal size distribution, shown in Fig. 5, was chosen to match coarse grain HMX.
Because the resolution requirement from the small grains limited the length of the
bed, most of our simulations used an approximate mono-dispersed size distribu-
tion. The “mono-dispersed” distribution had a mean grain diameter of 140µm
with a uniform variation of�10%. For this distribution, a cell size of 10µm is
used. The overall computational mesh consisted of 518�150 cells or 5:18mm�
1:5mm. The length is comparable to the granular sample (3:9mm) used in the gas
gun experiments [9].

The mono-dispersed granular bed is shown in Fig. 6. It contains a total of 432
grains (shown in red). The porosity profile shows that there are short wavelength
fluctuations with a large amplitude. The average porosity is 0.19, and the standard
deviation is 0.05. Averaging over 2 grain diameters (0.28mm) greatly reduces the
peak fluctuations. The averaged porosity is then 19�3%, and the variations have
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Figure 5:Grain distribution for coarse HMX.

a wavelength of� 1mm. The fluctuations in porosity result in a�4% variation
in the average density. Based on the Hugoniot relations for a homogenized con-
tinuum model, the relatively long wavelength density variation will contribute to
fluctuations behind a compaction wave.

4.2 Dimensionality and Smallest Length Scale

When two grains are pressed together, they distort elastically. The area of the
contact surface at which plastic flow first occurs sets a length scale for assessing
how well a micro-mechanics calculation of granular flow is resolved. For a lin-
early elastic material and circular or spherical grains, the static stress and strain
fields are given analytically by the Hertz contact solution; see for example, [21]
or [22].

We note in passing that contact forces are the basis for the discrete element
method first introduced for applications in soil mechanics [23]. These methods
have evolved and have recently been used to study shear flows in granular mate-
rials [24]. They are suited to the low pressure regime in which compressibility
can be neglected. Compaction waves involve a higher pressure regime in which
compressibility and plastic flow are important. Hence, the discrete methods are
complementary to the continuum mechanics method we are employing.

We outline the derivation of the elastic limit or the point at which plastic flow
occurs for the two-dimensional case of cylinders in contact. From the Hertz con-
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a) Density

b) Porosity profile

c) Porosity, smoothed with running average over 2 grain diameters

Figure 6:Mono-dispersed granular bed. Initial porosity is 19%.
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tact solution, the force between two grains is related to the contact area by

b
R
=

�
4
π
(1�ν2)

F=R
E

�1
2

; (7)

whereR is the radius of the cylinder, 2b is the length of the contact surface in the
plane normal to the cylindrical axis,F is the force per unit length between the
cylinders,ν is the Poisson ratio andE is the Youngs modulus. It is convenient
to relate the average stress on the contact surface to the peak stress. In the Hertz
contact solutions the normal stress on the contact surface is

σz(y) =

�
1�
�y

b

�2
�1

2

P0 ; (8)

whereσz is the normal stress as a function of positiony along the contact surface
(�b� y� b) andP0 is the peak stress which occurs at the center of the contact
surface. From this we obtain the average stress (for cross section of the grain)

F
2R

=

R b
�bσz(y)dy

2R
=

π
4

�
b
R

�
P0 : (9)

A large factor in the stress concentration,peak stress
average stress=

P0
F=2R, is the ratio of

the cross-sectional surface area of the grains to the contact surface area,R=b.
Substituting into Eq. (7) yields

b
R
= 2(1�ν2)

P0

E
: (10)

The maximum principle shear stress [21, Eq. (42.16)] occurs a distancez=b=
0:768 from the center of the contact surface in the normal direction and has a value
τmax= 0:3P0. With the von Mises criterion, yield first occurs when

Y =

r
3
2
jjσ0jj=

p
3 τmax= 0:3

p
3 P0 ; (11)

whereY is the yield strength. It then follows that plastic flow begins when

b
R
=

2

0:3
p

3
(1�ν2)

Y
E
: (12)
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The analogous results for the three-dimensional case of the contact between
spheres are given as follows. The average stress in terms of the peak stress is

F
(2R)2 =

π
6

�
b
R

�2

P0 ; (13)

where nowF is the force andb is the radius of a circular contact surface. We note
that the stress concentration factor is larger for spherical grains than for circular
grains since in 3-D it is proportional to(R=b)2 while in 2-D it is linear inR=b.
Yield occurs when

Y =

r
3
2
jjσ0jj= 2τmax� 2

3
P0 ; (14)

The contact surface radius at yield is given by

b
R
= 3π(1�ν2)

Y
E
: (15)

In 3-D the average stress at yield is proportional to(Y=E)2Y while in 2-D it is
proportional to(Y=E)Y. SinceY=E can be on the order of 0.01, the average stress
can be much smaller for spherical grains than for circular grains. This is one
important difference due to dimensionality between 2-D calculations and physical
3-D grains.

The values of important parameters characterizing the elastic limit of the Hertz
contact solution for HMX are listed below in Table 5.

2-D 3-D

b=R 5.5 3.6 % Linear contact length
∆R=R 0.15 0.07 % Fractional change in radius
P0 0.64 0.56 GPa Peak stress
average stress280 3.8 bars Average stress

Table 5: Elastic limit of Hertz contact solution for HMX.

The Hertz solution is based on the assumption that the change in grain radius is
small. The change in radius is given by

∆R
R

= 1�
"

1�
�

b
R

�2
# 1

2

� 1
2

�
b
R

�2

: (16)
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From the table, up to the elastic limit the Hertz solution is valid.
For our calculations, which have a resolution of only 14 cells per grain diam-

eter, the contact surface at yield is less than 1 cell. This affects weak compaction
waves (stress of less than say 0.5kb) for which elasticity dominates the stress.
In particular, the plastic dissipation when the change in porosity is small is not
accurately calculated. This also affects the weak elastic precursor to stronger
compaction waves.

Another difference between 2-D calculations and physical 3-D granular beds
is related to the porosity and number of contacts per grain. For example, we
can compare dense packed regular arrays in 2-D and 3-D. Circular grains in 2-
D have a maximum porosity of 1� π

2
p

3
= 9:3% and 6 contacts per grain, while

spherical grains in 3-D have a maximum porosity of 1� π
3
p

2
= 26% and 12 con-

tacts per grain. For random packing analytic formulae are not available. The
dimensionality of packing leads to difficulties in generating granular beds for 2-D
computations with the same porosity as used in experiments, especially for high
porosity loose packings. Even with the same porosity, there are uncertainties in
comparing numerical wave profiles calculated in 2-D with experimentally mea-
sured wave profiles that are inherently 3-D. Moreover, the hot-spot distribution
can be expected to depend on the number of contacts per grain and hence vary
with dimensionality.

4.3 Algorithmic Considerations

Since we are interested in hot spots, it is natural to consider the effect of heat
conduction. The scale over which heat conduction has an effect is on the order
of ∆x = [χ∆t]

1
2 . The value of the thermal diffusivity for HMX from table 4 is

χ = 1:4�10�7(mm)2=µs. The time covered by our compaction wave simulations
is about 1µs. Over this time period, heat conduction can smooth out temperature
variations over a length of only13 µm. This length is 30 times smaller than the cell
size. Hence, heat conduction is not significant at the resolution in our simulations.

Large distortions of the grains are required to fully compact the bed. Most of
the shear strain is plastic since the yield strength limits the magnitude of the elastic
strain to a small value (from Table 3,εel � 0:018). Even though the plastic strain
is large, the model we are using for the shear stress is a reasonable approximation
when the elastic strain is small.

The finite difference algorithm we are using is second order accurate in smooth
regions. However, most of the dissipative effects that give rise to hot spots occur
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at or near grain boundaries. The algorithm treats the boundary between a grain
and a pore (void) as a material interface. In addition, even though all the grains
have the same constitutive properties, to track grain distortion individual grains
are considered to be different materials. Consequently, the boundary between
neighboring grains is also treated as a material interface. Interfaces have a lower
accuracy than smooth regions. In an Eulerian algorithm, the interface between
materials gives rise to mixed cells. The velocity within a cell is assumed to be
constant. This implies a no-slip boundary condition at material interfaces.

Mixed cell algorithms are a continuing subject of research; see for exam-
ple [25]. The mixed cell constitutive relation we are using assumes a uniform
strain rate in each cell and then performs 1 step of a pressure equilibrium itera-
tion. Thus, the materials within a mixed cell can be out of mechanical and thermal
equilibrium. The advective stage of the algorithm uses the mixed cell partition of
the component volumes and energies in conjunction with an interface reconstruc-
tion algorithm based on the material volume fractions of neighboring cells.

For the compaction waves we are simulating, the stress is well below the bulk
modulus. Consequently, the material is stiff, and the stress is more sensitive to
small changes in density than to the energetics. Since only 14 cells are used to
resolve a grain, about half the mass of the grain is within two cells of the interface.
As a result of the stiff equation of state and the limited resolution, the computed
fluctuations in the temperature are expected to be less accurate than the average
mechanical wave properties. For this reason we emphasis qualitative effects and
trends with varying piston velocity.

5 Numerical Results

We compare compaction waves with three different piston velocities. The
average effect of the heterogeneities can be judged by comparing with the predic-
tions of the porous Hugoniot for uniaxial-strain listed in table 6 below. In addition,
we describe the fluctuations resulting from the granular structure of the bed.

For pure HMX, the 200m/s piston would give rise to a split wave structure
(elastic precursor followed by plastic shock shown in Fig. 2), and the 1000m/s
piston is fast enough such that the plastic wave outruns the elastic precursor. The
500m/s piston is an intermediate case. The porous Hugoniot predicts the wave is
above the crush-up pressure and is fully compacted. In contrast the wave driven
by the 200m/s piston is only partly compacted. These three cases illustrate the
qualitative changes in the wave profile as the wave strength increases.
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up 200 500 1000 m/s Piston velocity
us 1100 2100 3400 m/s Wave speed
φ 0.98 1 1 – Solid volume fraction

σxx 3.4 16 52 kbar Stress
T 322 424 720 K Temperature

Table 6: State behind compaction based on porous Hugoniot for uniaxial-strain.

5.1 Comparison with Piston Velocity

For all the simulations the piston is initially at the right boundary. Att = 0, it
is impulsively started and moves to the left. Two types of plots are used to display
the numerical results: 2-D plots in which the value of a variable is indicated by
color, and 1-D plots of profiles. For the 2-D plots, voids and the region through
which the piston has moved are indicated in gray. Superimposed in black are the
interfaces of the grains obtained from contour levels of the material component
volume fractions. These interfaces are displayed as a diagnostic to indicate the
distortion of the grains and are not used by the code for evolving the flow. The x
and y coordinates are in mm. The 1-D profiles are averages over the y-direction,
i.e.,transverse to the direction of wave propagation. A triangular symbol is plotted
for each cell to indicate the resolution. In addition, the dashed lines represent the
minimum and maximum values.

1. The time evolution of stress and velocity profilesare shown in Fig. 7. The
profiles are relative to the piston whose position is translated to its initial
value. These profiles are indicative of a propagating wave, though the ma-
terial heterogeneities give rise to some fluctuations behind the wave front.
The long wavelength fluctuations in the wave profile are due to the statistics
of the grains, which, as discussed in Subsection 4.1, result in long wave-
length variations in the initial density. The wave profiles are approximately
steady at the end of the runs. We examine in detail the wave structure at the
last time displayed.

2. The stress profiles and the stress fields (σxx) are shown in Figs. 8 and 9.
The wave driven by the 200m/s piston is only partly compacted, as shown
by porosity profile in Fig. 10. The other two cases are fully compacted,
i.e., zero porosity behind the wave front. On the stress profiles, the predic-
tions from the porous Hugoniot for uniaxial strain are superimposed in red;
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a)up = 200m=s, profiles att = 0:4;0:8;1:2;1:6;2:0µs

b) up = 500m=s, profiles att = 0:4;0:8;1:2;1:6µs

b) up = 1000m=s, profiles att = 0:2;0:6;1:0;1:4µs

Figure 7:Time evolution of stress and velocity profiles.
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the horizontal line is the value of the stress, and the vertical line is the posi-
tion of the shock. The stress is slightly low for the 200m/s piston. This is
due to the simple approximation for the equilibrium volume fraction used
to calculate the Hugoniot locus. The approximation gives a volume fraction
of 0.98 while the value in the simulation is about 0.95. Correcting for the
volume fraction would raise the stress and the wave speed. As shown in
green this is closer to the simulation. The other two cases are not sensi-
tive to the chosen equilibrium volume fraction since their wave pressures
are well above the crush-up pressure, and the waves are fully compacted,
i.e., φ = 1. The shock being slightly behind the prediction is in part due to
the time delay in forming the shock profile. For all three cases, the average
numerical results are in good agreement with the Hugoniot.

The minimum and maximum values are also shown on profiles. This is
an indication of the range of the spatial variation. The relative amplitude of
the variation is quite large for the low piston velocity case. In addition, we
note that portions of some grains go into tension. Very likely this is due to
side rarefaction within a grain. Since HMX is brittle, tension would cause
them to fracture. Fracture is not included in the constitutive model used for
the simulations.

There is a qualitative difference in the profiles for the three cases. For
the 200m/s piston, the wave profile is very spread out. The profile for the
500m/s piston has a precursor and then a steep gradient. For the 1000m/s
piston the wave profile rises abruptly without a precursor. For a pure solid
the precursor corresponds to the elastic wave in the 2-wave structure due
to the elastic-plastic transition. In contrast to the pure solid, the porous
material precursor is spread out and not like a shock. As with the pure
solid, the precursor is not present when the plastic wave is strong enough to
propagate faster than the elastic wave. Later we characterize the precursor
in more detail.

The 2-D plot for the low velocity case shows that the stress behind the
wave is very non-uniform due to stress fingering. This is the analog of
stress bridging that has been studied for statically loaded granular beds;
see for example, [26] and reference contained therein. The stress fingering
occurs in the precursor region for both the 200 and 500m/s piston. It is not
as apparent in the plot for the 500m/s piston because of the larger range of
the stress scale. Stress fingering gives rise to larger stress concentrations
than the estimate in Subsection 4.2 and leads to some plastic deformation
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a)up = 200m=s at time = 2.0µs

b) up = 500m=s at time = 1.6µs

c) up = 1000m=s at time = 1.4µs

Figure 8:Stress profile (σxx) of compaction waves.
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a)up = 200m=s at time = 2.0µs

b) up = 500m=s at time = 1.6µs

c) up = 1000m=s at time = 1.4µs

Figure 9:Stress field (σxx) of compaction waves. Pressure scale on color bar is in kb.
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Figure 10:Porosity profile att = 2:0µs of compaction wave driven by 200m/s piston.
Profile has been smoothed by taking running average over a length of 2 grain diameters.
Dotted line is the average initial porosity (19%).

even at very low average stresses. The resulting plastic dissipation affects
the wave profile by damping the precursor.

In contrast to the low piston velocity case, when the piston velocity is
larger, the grains are severely distorted behind the wave front. Other re-
searchers have refered to the low velocity cases as quasi-static compression
and the high velocity cases as dynamic compression. See for example [11].
The plastic deformation in the high velocity cases is a major source of dissi-
pation. The non-uniform manner in which the grains distort is a large source
for temperature variations on a subgrain scale. Despite the non-uniformity
of the granular bed, the wave front is fairly planar, and the wave width is on
the order of 1 to 2 grain diameters.

The Hugoniot locus only determines the component of stress in the direc-
tion of wave propagation. Though the computed stressσxx agrees well with
the Hugoniot, the stress is a tensor. The components of the stress deviator
are shown in Fig. 11. For the stronger fully compacted waves, the stress
deviator appears to be relaxing towards 0. This is in contrast to a pure solid
for which the stress deviator behind a plastic wave isσ0xx =

2
3Y = 2:5kb.

Most likely the relaxation is due to acoustic waves behind the wave front
generated by long wavelength stress fluctuations which arise from the local
variations in the initial density due to the grain statistics. A visco-elastic
continuum model [27, 28] has been used to describe this relaxation behav-
ior in porous materials. For strong fully compacted waves, a hydrostatic
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equation of state is adequate to obtain the state behind the wave.

For the 200m/s piston the wave is only partly compacted, andσ0xx appears
to be approaching about 1kb. This is only 40% of the value for the homoge-
neous case. Consequently, our approximation for the stress, Eq. (3), used in
computing the Hugoniot locus is not accurate. The same can be said of the
hydrostaticP-α approximation. The agreement for weak, partly compacted
waves between the simulations and the Hugoniot locus is fortuitous. Since
the crush-up pressure is small compared to the bulk modulus, the equation
of state is stiff in the regime in which partly compacted waves occur. Con-
sequently, a small change in the solid density greatly affects the stress, yet
the average density is determined in large measure by the solid volume frac-
tion. When the equilibrium volume fraction is empirically fit, the principal
Hugoniot locus is insensitive to assumptions on the stress deviator.

3. The velocity profilesare shown in Figs. 12 and 13. The wave profile for the
x-component of the velocity is qualitatively the same as for the stress. The
velocity variations are small except at the wave front. The variation at the
front increases with piston velocity. For the 1000m/s piston, the velocity
of a few grains overshoots by a factor of 2. This is the expected blow-off
velocity at a free surface [29] and is a consequence of the pores between
grains. The re-shock when the material impacts the next grain contributes
to the localized dissipation that gives rise to hot spots.

On average, the y-velocity is zero, as expected for a wave traveling in the
x-direction. Immediately behind the wave front, the minimum and maxi-
mum of the transverse velocity component is a significant fraction of the
piston velocity. This is due to the local rearrangement of the grains made
possible by the plastic deformation that occurs when the pores are com-
pressed out. Nesterenko [11] empirically characterized the dynamic com-
paction regime with a micro-kinetic energy. The micro-kinetic energy is to
a large extent a measure of the extremes in the transverse velocity compo-
nent at the wave front. It is a consequence rather than the cause of the pore
collapse.

4. Energy profilesare shown in Fig. 14. The kinetic energy (green) is deter-
mined by the piston velocity. The flow behind the compaction wave has
the expected value of the kinetic energy. The compaction waves are strong
enough such that on the porous Hugoniot the internal energy (blue) is nearly
the same as the kinetic energy. For the 200m/s piston the internal energy in
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a)up = 200m=s at time = 2.0µs

b) up = 500m=s at time = 1.6µs

c) up = 1000m=s at time = 1.4µs

Figure 11:Profiles of components of stress deviator of compaction waves:σxx�P in
red,P�σyy in blue,P�σzz in green, andjσxyj in black.
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a)up = 200m=s at time = 2.0µs

b) up = 500m=s at time = 1.6µs

c) up = 1000m=s at time = 1.4µs

Figure 12:Velocity profile (x-component) of compaction waves.
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a)up = 200m=s at time = 2.0µs

b) up = 500m=s at time = 1.6µs

c) up = 1000m=s at time = 1.4µs

Figure 13:Velocity profile (y-component) of compaction waves.
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the simulation of the compaction wave exceeds the value on the Hugoniot
locus. This is not necessarily an error in the simulation. While the Hugoniot
locus assumes that the wave profile is steady, the existence and stability of a
profile depends on the dissipative mechanism which generates the entropy
required by the jump conditions.

In the familiar case, when viscosity is the dissipative mechanism, the
entropy jump across the wave is given by

ρusT∆η = µ
Z

dx

�
du
dx

�2

∝ µ
(∆u)2

∆x
:

For any value of the viscosity coefficientµ, the width of the wave∆x can
be adjusted to obtain the entropy increase∆η compatible with the Hugoniot
jump conditions. In our simulations, for weak waves the plastic work is
the dominant dissipative mechanism. The total plastic work across a com-
paction wave is given byY∆εp whereY is the yield strength andεp is the
plastic strain. The plastic strain is determined by a rate equation and not a
conservation law. The jump in the plastic strain is related to the equilibrium
volume fraction and is affected by stress concentrations which lead to local
yielding at the contacts between grains. Consequently, a large fraction of
the plastic work depends on the pressure behind the wave and is indepen-
dent of the wave width. Fig. 7 shows the wave is spreading and doesn’t have
a steady profile. This is compatible with the excess dissipation compared to
the Hugoniot locus.

In addition to the internal energy, the shock heating and the plastic work
are plotted in red. We define the shock heating as the internal energy minus
the energy on the initial isentrope to the same final density as the com-
paction wave;i.e., shock heating is

R
Tdη or the dissipation in the wave

profile. For the partly compacted wave (200m/s piston) the internal energy
is almost entirely due to plastic work. For the fully compacted waves (500
and 1000m/s pistons), the plastic work is less than the shock heating. The
remaining fraction of the shock heating is due to other dissipative mecha-
nisms; shear viscosity and artificial bulk viscosity.

Figure 14 shows that the plastic work increases with piston velocity. The
plastic work is proportional to the plastic strain. As shown in Fig. 15, the
plastic strain increases with the change in porosity but the rate of increase
depends on the piston velocity and hence on the wave strength. Within the
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a)up = 200m=s at time = 2.0µs

b) up = 500m=s at time = 1.6µs

c) up = 1000m=s at time = 1.4µs

Figure 14:Energy profiles of compaction waves. Green is kinetic energy, blue is internal
energy, red is plastic work. Dotted lines are corresponding values from porous Hugoniot
but with red representing the shock heating. (Hugoniot kinetic energy lies on top of line
for Hugoniot internal energy.)
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Figure 15:Porosity vs. plastic strain on the wave profile. Wave profile has been smoothed
by taking a running average over a distance of 1 grain diameter (0.14mm). Green, blue
and red correspond to piston velocities of 200, 500 and 1000;m/s, respectively.

Figure 16:Porosity vs. pressure on the wave profile. Wave profile has been smoothed by
taking a running average over a distance of 1 grain diameter (0.14mm). Green, blue and
red correspond to piston velocities of 200, 500 and 1000;m/s, respectively.

wave profile, the change in porosity can be related to the pressure. Fig. 16
shows that the slope of the porosity as a function of pressure decreases with
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piston velocity. Since the time derivative of the pressure increases with
wave strength, the change in slope of the porosity curve can be interpreted
as a rate dependence due to the inertia of the grains. Similarly, the depen-
dence on wave strength of the plastic strain as a function of porosity can be
interpreted as a rate dependence of the compaction process. We note that
the rate dependence of the porosity is not included in theP–α model but
is included in the closely related single-phase limit of the Baer-Nunziato
model [30].

The increase of plastic strain with piston velocity has an analog in uni-
axial compression of a homogeneous solid. Above the elastic limit, plastic
strain is needed to increase the density since the elastic shear strain is lim-
ited by the yield strength. For strong waves, the plastic strain is proportional
to the change in specific volume. Since the plastic work isεpY �Y∆V and
the Hugoniot energy is12P∆V, when the wave pressure is more than twice
the yield strength, plastic work can provide only a part of the dissipation
needed by the wave. Similarly, Figure 14 shows that for a granular material
with increasing wave strength the plastic work is a smaller fraction of the
shock heating.

5. The plastic strain and temperature fieldsare shown in Figs. 17-19. For the
partly compacted wave (200m/s piston), the high temperature regions cor-
respond to the regions of large plastic strain. This is expected since the
internal energy is almost entirely due to plastic work. Moreover, large plas-
tic strains result from deformations due to stress concentrations at the con-
tact surfaces between grains. Consequently, hot spots occur in regions near
grain interfaces.

For the fully compacted waves (500 and 1000m/s pistons) the plastic
strain and temperature are not as highly correlated. This is because plastic
work provides only part of the dissipation required by the Hugoniot jump
conditions. The other dissipative mechanisms included in the simulations
are from shear viscosity and artificial bulk viscosity. We also note that the
peak plastic strain in regions of high deformation is excessive since the ef-
fect of melting on the yield strength has not been accounted for. Neverthe-
less, the hot spots still occur along grain interfaces. Their distribution is
discussed next.

6. The hot-spot distribution, temperature and size, are shown in Fig. 20. The
average of the temperature distribution is the bulk temperature. The bulk
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a) Plastic strain

b) Temperature

Figure 17:Plastic strain and temperature for 200m=s piston at time = 2.0µs.
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a) Plastic strain

b) Temperature

Figure 18:Plastic strain and temperature for 500m=s piston at time = 1.6µs.
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a) Plastic strain

b) Temperature

Figure 19:Plastic strain and temperature for 1000m=s piston at time = 1:4µs.
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a)up = 200m=s at time = 2.0µs

black, 1< x< 2;
red, 2< x< 3;
green, 3< x< 4;

blue, T > 350;
green, T > 400;
red, T > 450;

b) up = 500m=s at time = 1.6µs

black, 1< x< 2;
red, 2< x< 3;
green, 3< x< 4;

blue, T > 500;
green, T > 600;
red, T > 700;

c) up = 1000m=s at time = 1.4µs

black, 0:5< x< 1:5;
red, 1:5< x< 2:5;
green, 2:5< x< 3:5;

blue, T > 800;
green, T > 1200;
red, T > 1600;

Figure 20:Temperature distribution and hot-spot area. Area is specified by the radius of
an equivalent circle. Cell radius is 10µm. Initial grain radius is 7 cells.
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temperature corresponds to the value on the Hugoniot locus and is close
to the temperature with the peak value of the mass fraction. Since the hot
spots are above the average, some material must be at temperatures below
the Hugoniot temperature. The low temperatures correspond to the interior
of the grains.

From the plot of induction time shown in Fig. 4, a hot spot with a temper-
ature of 650 to 700K burns within about oneµs. For the 1000m/s piston, the
bulk temperature of 720K is sufficient to lead to prompt ignition. For the
weaker compaction waves, the tail of the temperature distribution is within
a range that will cause significant reaction and the hot spots can be expected
to lead to a delayed ignition. In fact, detonation waves are observed to oc-
cur after about 100µs in DDT tube experiments driven by a piston with a
velocity of about 200m/s. Gas gun experiments corresponding to piston
velocities of 500m/s show significant burning occurs after the compaction
wave propagates only a few mm. Our simulations are compatible with these
results.

However, the resolution of our simulations is limited. The highest tem-
peratures occur within hot spots of only 1 or 2 cells in extent, red curve
in Fig. 20. Very likely these temperatures are affected by numerical er-
rors at grain interfaces. Computed hot spots with a larger size, green curve
in Fig. 20, are likely to have smaller error bars. Because of the uncer-
tainty in the temperature distribution for the simulation, the computed mass-
averaged reaction rate is subject to large errors. Qualitatively, the simula-
tions do show that the hot spots are within the range expected to have a
significant effect on ignition. Higher resolution would be needed for quan-
titative predictions of the reaction rate.

7. The equivalent plastic stress and plastic strainare shown in Figs. 21 and 22.
With the von Mises yield condition, plastic flow occurs when the equivalent

plastic stress (
q

3
2 jjσ0jj) equals the yield strength. Furthermore, for rate

independent plasticity the equivalent stress is limited to the yield stress.
As a result the equivalent stress is a convenient quantity for examining the
elastic precursor in weak compaction waves.

The leading edge of the precursor is at the same position (� 0:5mm
at t = 1:6µs) for both the 200 and 500m/s piston. The precursor veloc-
ity is 2:9 to 3:0mm=µs. This is to be compared to the solid longitudinal
sound speed ofclong = 3:75mm=µs, and the bulk sound speed ofcbulk =
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a)up = 200m=s at time = 1.6µs

b) up = 500m=s at time = 1.6µs

c) up = 1000m=s at time = 1.4µs

Figure 21:Equivalent plastic stress
�
(3

2)
1
2 jjσ0jj

�
profile of compaction waves. Plastic

yield occurs at 3.7kb.
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a)up = 200m=s at time = 1.6µs

b) up = 500m=s at time = 1.6µs

c) up = 1000m=s at time = 1.4µs

Figure 22:Plastic strain of compaction waves.
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2:65mm=µs. It appears that the precursor speed is aboutφ0clong= 3:0mm=µs.
The porosity is expected to lower the acoustic speed since a wave is trans-
mitted from one grain to the next only through the contact surfaces. Hence,
the effective path length the wave travels is longer and the average speed is
lower. But we have no theory for the form given above.

For the 1000m/s piston, the wave speed (3.4mm=µs) exceeds the precur-
sor speed. Consequently, the plastic wave outruns the elastic wave, and a
precursor is not possible. Thus, the precursor behavior is similar to that of
the pure solid. However, in contrast to a split wave as shown in Fig. 2, the
elastic-plastic transition gives rise to a highly dispersed precursor.

The profiles of equivalent stress and plastic strain show the effect of stress
concentrations. Localized yielding occurs when the profile of the maximum
equivalent stress reaches the yield strength. In fact, the position of the plas-
tic wave in Fig. 8 coincides with the rapid rise in the average plastic strain.
Plastic strain is needed to change the porosity, as shown in Fig. 15. Con-
sequently, the plastic wave corresponds to changes in porosity, variation of
porosity with pressure shown in Fig. 16, and the precursor results from the
elastic behavior.

However, the precursor is not purely elastic. Even with a small aver-
age stress, localized stress concentrations give rise to a small amount of
plastic strain and hence dissipation. Because of the limited resolution, as
discussed Subsection 4.2, the simulations underestimate the dissipation in
the precursor. Consequently, we expect the precursor to damp faster than
the calculations predict.

For a homogeneous solid, weak waves below the Hugoniot elastic limit
correspond to elastic shocks. In contrast, weak waves in a porous solid
would correspond to the precursor we have been discussing. They would
display substantial stress fingering and spread out in time rather than hav-
ing the form of a traveling wave. Consequently, a key assumption used to
calculate the porous Hugoniot in Section 3 is violated for weak waves (be-
low the yield strength, an average stress of say 1kb). Furthermore, the stress
fingering raises the stress concentrations and would cause plastic deforma-
tion to occur at a lower wave stress than the elastic limit given in Table 5.
Due to the small contact surfaces at which plastic deformation occurs, high
resolution would be required to calculate accurately the dissipation in weak
waves.
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Figure 23:Effective plastic behavior. Average profiles of 200m/s piston in red, 500m/s
piston in blue and 1000m/s in green Solid green line is for perfectly plastic pure solid.

Though the pure solid is perfectly plastic and rate independent, the aver-
age behavior of a granular bed does not inherit these properties. Profiles in
the plastic (stress, strain)-plane are shown in Fig. 23. These profiles have
been smoothed by taking a running average over a length of one grain diam-
eter. The smooth increase in the plastic strain with equivalent stress corre-
sponds to the stress rise in the wave profile. The decrease in the equivalent
stress occurs behind the wave front. It is a consequence of the relaxation of
the components of the stress deviator shown in Fig. 11 The final equivalent
stress is nearly the same for the 500 and 1000m/s piston. The length of run
for the 200m/s piston may not be long enough for relaxation to occur.

This average behavior of the granular HMX bed is suggestive of rate
dependent plasticity. Work hardening would be needed if the asymptotic
value of the equivalent stress varied with plastic strain. Longer runs would
be needed to determine these asymptotic values. For a model based on
the average material behavior it would be more appropriate to usejjhσi0jj
rather thanhjjσ0jji. Both measures of the average equivalent stress display
a similar relaxation effect.

The results to this point can be summarized as follows. The mechanical prop-
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erties of a compaction wave in a granular bed, stress and wave speed, are in good
agreement with the porous Hugoniot locus for uniaxial-strain. Consequently, the
total dissipative energy can be determined from continuum models in which the
heterogeneities are averaged out.

The elastic-plastic transition gives rise to an elastic precursor. In contrast to the
homogeneous solid, the precursor is spread out and not a discontinuous shock. As
with the homogeneous solid, the elastic precursor is not present when the plastic
wave speed is larger than the precursor speed. The spreading out of the elas-
tic precursor is due to the stress concentrations at the contact surfaces between
grains. The stress concentrations lead to localized plastic deformation. Thus,
plastic strain occurs when the average stress is below the yield strength.

The plastic work is the dominant dissipative mechanism for weak partly com-
pacted waves (200m/s piston). In this case the plastic work exceeds the Hugoniot
energy, and the compaction wave is not steady; instead, it spreads out in time. For
the fully compacted waves (500 and 1000m/s piston) the plastic work is limited
by the yield strength and comprises only part of the shock heating.

The granular heterogeneities give rise to fluctuations in the temperature. Ho-
mogenization theories typically account for only the average effect of fluctuations.
This is a reasonable approximation for inert materials, but not for reacting mate-
rials with temperature sensitive reaction rates. For the compaction waves in our
simulations, the fluctuations are in a range that would have a critical effect on
ignition sensitivity. However, the fluctuations depend on mesh resolution and the
assumed dissipative mechanisms in the constitutive model. The sensitivities to
yield strength and shear viscosity are discussed in the next subsections.

5.2 Effect of Yield Strength

Material strength allows the granular bed to have a non-zero porosity under
stress. The stress above which a pore must collapse, often refered to as the crush-
up pressure, determines the wave strength to achieve a fully compacted wave,
i.e., φ = 1 behind the wave. Assuming the pores between grains are voids, a
non-zero porosity requires that the normal component of the stress vanishes along
grain-pore interfaces. Consequently, the maximum eigenvalue of the stress tensor
subject to the condition that another eigenvalue vanishes provides an estimate for
the crush-up pressure. Since we are interested in compaction waves, the maximum
stress component, rather than the pressure, is a good criterion for pore collapse.
The crush-up stress has a dependence on dimensionality. We estimate it in both
2-D (planar-strain) and in 3-D.
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For the estimate it is sufficient to consider the case in which the stress and
strain tensors are diagonal. In 2-D, the planar strain tensor has the form

ε =
1
3

diag(ε;ε;ε)+
1
3

diag(ε1;ε� ε1;�ε) ;

in which the third component of strain vanishes. The corresponding stress tensor,
assuming linear elasticity, has the form

σ = Kdiag(ε;ε;ε)+
2G
3

diag(ε1;ε� ε1;�ε) ;

whereK is the bulk modulus andG is the shear modulus. Requiring the second
component of the stress to be zero gives

ε1 =

�
3K
2G

+1

�
ε :

Von Mises yield condition then determinesε

Y2 =
3
2
jjσ0jj2 = 2

3

��3
2

K +G
�2

+
�3

2
K
�2

+G2
�

ε2 ;

whereY is the yield strength. After some algebra, the maximum stress component
can be expressed as

σxx = (1�ν+ν2)�
1
2 Y ; (17)

whereν is the Poisson ratio. For HMX,ν = 0:2 and a wave with a stress,σxx >
1:09Y, will be fully compacted. WithY = 3:7kb, a wave driven by a 200m/s
piston has a stress slightly below the value needed for full compaction. However,
stress fluctuations due to the granular heterogeneities can lead to a small amount of
porosity at our estimated crush-up stress which is based only on local conditions.

In 3-D, a similar analysis leads to a maximum stress component at crush-up of

σxx =
2p
3
Y � 1:15Y : (18)

The 3-D maximum stress is greater than the 2-D maximum stress since it is not
limited by the constraint of planar strain. However, for HMX the maximum stress
is only 5% larger in 3-D than in 2-D.
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To show the effect of yield strength on a compaction wave, simulations were
run with a high and low value of the yield strength; 3.7 and 0.48kb respectively.
The stress fields and stress profiles are compared in Figs. 24 and 25. These simu-
lations used hexagonal grains with a log-normal size distribution on a 564�200
mesh with 5µm cells.

Yield strength has a considerable effect on weak compaction waves. For the
200m/s piston, with the low yield strength the stress is above the crush-up pres-
sure, and the wave is fully compacted;i.e., φ = 1 behind the wave front. While
in the high yield strength case, the stress is slightly below the estimated crush-up
pressure, and the wave is partly compacted. Fig. 25 shows that the wave speed and
the final stress are different. This is a consequence of the different final porosi-
ties. The mass, momentum and energy jump conditions must be supplemented
with the equilibrium porosity to determine the Hugoniot locus. The equilibrium
porosity in turn is a function of the yield strength. Moreover, it can be shown that
decreasing the porosity has a similar effect to an endothermic reaction in that the
partial Hugoniots with fixedφ are shifted to the left in the(V;P)-plane. Though it
may seem counter intuitive, for fixed piston velocity the stress and wave speed de-
crease with a lower yield strength as observed in the simulations. For the 500m/s
piston, both cases are fully compacted, and the final stress and wave speed are
nearly the same.

The lower yield strength has two other effects. It sets the stress scale for the
elastic precursor. In particular, the steep gradient associated with the plastic wave
starts at a stress of about the yield strength. The experimental rise time for a
compaction wave is typically estimated as the time between 5% and 95% of the
maximum on the profile. Hence decreasing the precursor can change the estimate
of the rise time. The rise time for the weak partly compacted wave in the simula-
tion with the expected value of the yield strength is larger than that observed in gas
gun experiments, see [9, Figs. 2.8 and 2.9], even after correcting for differences
in porosity and grain size. A yield criterion with work hardening would have
a large effect on the precursor and hence the rise time of the compaction wave.
Physically this is quite plausible for the following reasons: (i) HMX twins at low
stress, but the accumulation of defects limits the amount of twinning [16], and
(ii) quasi-static hardness measurements lead to an estimate of the yield strength of
0.13GPa [31], which is factor of 2.5 lower than the value obtained from dynamic
wave profiles [14]. The precursor has a smaller effect for stronger fully compacted
waves.
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a)Y = 3:7kb

b) Y = 0:48 kb

Figure 24:The effect of yield strength on stressσxx. Simulations apply a 200m/s piston
to a bed composed of hexagonal grains with log-normal grain size distribution. The plots
are at a time of 0:8µs and the mesh had cell size of 5µm.
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a)up = 200m/s

b) up = 500m/s

Figure 25:The effect of yield strength on stress profiles: blue is high yield strength and
red is low yield strength.

Lowering the yield strength decreases the plastic work. This is because the
plastic work is given by (plastic strain)�Y, and the plastic strain is related to
the change in porosity. Consequently, the yield strength affects the proportion of
shock heating due to plastic deformation. Changing the dissipative mechanisms
for shock heating in turn affects the distribution of hot spots. For the 500m/s
piston, Fig. 26 shows that the hot-spot mass increases with yield strength.

The high yield cases here correspond to those in the previous subsection, ex-
cept for the grain size distribution. Both cases have an initial porosity of 19%.
It is noteworthy from comparing Fig. 9a with Fig. 24a and Fig. 8a with Fig. 25a
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Figure 26: Comparison of hot-spot distribution behind wave front (1:5 < x < 2) with
yield strength for 500m/s piston: blue is high yield strength and red is low yield strength.

that the mechanical structure of a compaction wave does not appear sensitive to
the grain size distribution. Both cases display stress fingering, and the average
stress behind the wave is about the same. Even the leading edge of the elastic
precursor has the same velocity. The mono-dispersed distribution allowed for a
larger cell size and a longer distance of run. We had expected the sharp corners in
the hexagonal grains to cause greater plastic distortion and lead to higher hot-spot
temperatures. This effect was not observed. We now believe the calculations do
not have sufficient resolution per grain to determine whether such an effect exists.

Up to this point the simulations have used a constant yield strength. However,
the yield strength and the shear modulus should vanish when the grains melt. To
determine the magnitude of this effect additional simulations were run with the
mono-dispersed granular bed. A comparison of the plastic strain profiles for a
1000m/s piston is shown in Fig. 27. As expected, melting limits the plastic strain.
The corresponding temperature distributions are shown in Fig. 28. Melting broad-
ened the distribution around the peak but hardly affected the tail. This is a conse-
quence of the energy profiles in Fig. 14, which
show that the plastic work is not the dominant dissipative mechanism for com-
paction waves strong enough to cause significant melting. Consequently, the
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Figure 27: Plastic strain profile for 1000m/s att = 1:6µs with and without melting.
Blue is standard case with constant yield strength. Red is case in which yield strength
vanishes above melting temperature. Line with symbols represents the average. Dashed
lines represent the minimum and maximum.

Figure 28:Effect of lowering yield strength above melting on hot-spot distribution for
1000m/s piston. Blue is standard case with constant yield strength. Red is case in which
yield strength vanishes above melting temperature.
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change of the yield strength with melting does not have a significant effect on
hot spots.

5.3 Effect of Shear Viscosity

The yield strength and the coefficient of shear viscosity control the amount
of dissipation from plastic work and viscous shear heating. In the previous sub-
section we varied the yield strength. Here, the viscous coefficient is varied in
order to get a further idea of how sensitive a compaction wave is to the dissipative
mechanism.

All the previous calculations used a linear viscous shear stress

σ0 = µ
d
dt

ε0 ;

where0 denotes the deviator, withµ= 0:031GPa�µs (310 Poise) below melting
andµ= 1:4�10�5GPa�µs (0.14 Poise) above melting. Since viscosities of solids
(other than polymers) are not well known, to get an idea for the magnitude of the
coefficient of shear viscosity, we compare it with the artificial viscosity needed for
a shock capturing calculation of a plastic shock in a homogeneous solid. For von
Neumann-Richtmeyer artificial viscosity the effective viscous coefficient is given
by

µNR ∝ ρ`(µ1c+µ2∆u) ;

where` is a length scale usually taken as the cell size. With the flux-limited
artificial viscosity scheme we are able to use dimensionless coefficientsµ1 = 0:1
andµ2 = 1:5. Taking∆u to be one third of the piston velocity and`= 10µm, for
the 1000m/s piston, the artificial viscosity is dominated by theµ2 term, and the
coefficient is 150Poise or about half the shear viscosity coefficient below melting.
The artificial viscosity coefficient would be smaller for weaker waves driven by
lower piston velocities. Finally, we note that for liquids at atmospheric pressure,
viscosities are typical in the range of 10�3 to 10�1Poise.

The stress profiles,σxx andσequiv, of a compaction wave driven by a 1000m/s
piston are shown in Fig. 29 for simulations (mono-dispersed granular bed as in
Subsection 5.1) with and without shear viscosity. The profiles for these two cases
are nearly the same. Also plotted in the figure is the shock profile for a homoge-
neous solid. The homogeneous case shows the resolution limited shock width of
the simulations. The wave width in the granular bed is about 1 grain diameter and
is several times larger than the numerical resolution. Thus, with the parameters
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Figure 29:Comparison of compaction wave profiles,σxx (solid line) andσequiv (dashed
line), for 1000m/s piston att = 1:4µs: blue is without shear viscosity and red is with shear
viscosity. Black line with symbols is numerical profile for shock in homogeneous solid at
time (0.9µs) to match position of wave front and scaled to 60kb.

Figure 30:Comparison of shear viscosity on temperature fluctuations behind compaction
wave for 1000m/s piston att = 1:4µs: blue is without shear viscosity and red is with shear
viscosity.

we are using, the grain scale rather than the dissipative mechanism dominates the
stress profile when the compaction wave is strong enough to preclude an elastic
precursor.
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Though the dissipative mechanism hardly affects the stress profiles, it has a
significant affect on fluctuations. The temperature distribution with and without
shear viscosity is compared in Fig. 30. Surprisingly, the tail of the distribution is
larger without shear viscosity. This is because shear viscosity, by smoothing out
the velocity field at the wave front, decreases the amount of plastic deformation at
grain boundaries and hence the peak plastic work.

The extreme tail of the temperature fluctuations,T > 1500, is not shown in
Fig. 30. Hot spots of only 1 or 2 cells dominate the extreme tail. Unfortunately,
these cannot be distinguished from numerical artifacts. Very likely meaningful
temperatures will require some sort of smoothing at grain boundaries. Unless the
hot spots can be resolved, smoothing runs the risk of underestimating the high
end of the temperature distribution. For our simulations, half the mass of a grain
is within 2 cells of the grain boundary. Clearly this is not sufficient resolution to
determine accurately the temperature fluctuations.

The Arrhenius reaction rate, which we used to compute hot spot induction
time in Fig. 4, is extremely temperature sensitive. Consequently, even if the ex-
treme tail of the temperature distribution corresponds to a very small mass, it can
have a significant effect on the mass-averaged reaction rate. The sensitivity of
the reaction rate together with the limited resolution, which results in temperature
inaccuracies, prevent us from presenting meaningful quantitative results on how
the temperature fluctuations affect the mass-averaged reaction rate.

With larger values of the shear viscosity, the compaction wave width begins
to increase. To see this effect we tripled the shear viscosity to 1000 Poise. A
comparison of the stress profiles for compaction wave in the mono-dispersed bed
driven by a 500m/s piston are shown in Fig. 31. The wave width is only slightly
larger. This implies that the viscosity would have to be very large for the viscous
length scale to dominate the length scale from the granular heterogeneities. The
larger viscosity also affects the hot spots. A comparison of the temperature distri-
bution is shown in Fig. 32. We see that the tail of the distribution increases with
viscosity.
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Figure 31:Comparison of compaction wave profiles,σxx for 500m/s piston att = 1:6µs:
blue is standard shear viscosity and red is high shear viscosity.

Figure 32:Comparison of temperature fluctuations behind compaction wave for 500m/s
piston att = 1:6µs: blue is standard shear viscosity and red is high shear viscosity.

5.4 Effect of Grain Distribution

To check the effect the grain distribution has on a compaction wave we com-
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pared simulations with a random and a regular mono-dispersed granular bed. The
regular bed was generated from a closed-packed array of circles by randomly de-
creasing the radius of 90% of the circles by up to 10%. This procedure resulted
in granular beds with nearly the same porosity: 17.6% for the regular array and
18.6% for the random array.

The stress profiles are shown Fig. 33. The compaction wave in the bed with
the larger initial porosity has a slower wave speed. The times are selected such
that the plastic wave is at the same position. The precursor is slightly weaker
for the regular array. In principle, the way the regular array is constructed the
grains are not touching, and the precursor should disappear. However, the spacing
between grains is within one cell, and hence the grains are coupled due to the
limited numerical resolution. A loosely packed granular bed, in which there are
fewer contacts per grain, would have a similar effect on the precursor.

The temperature distributions are compared in Fig. 34. The tail of the distri-
bution is larger for the bed with the random packing. This is because a grain in
the regular array has more contacts, which lowers the stress concentrations, and
hence lowers the peak plastic work.

This comparison again shows that the wave stress is determined by the Hugo-
niot jump relations, which depend on the porosity. But the hot-spot distribution is
sensitive to those aspects of the granular distribution which affect stress concen-
trations. In addition, the elastic precursor and small amplitude long-wave length
stress fluctuations are also affected by the granular distribution.

5.5 Mesh Refinement

The resolution in our simulations is adequate for the stress profiles but not
for the hot-spot distribution. Cutting the cell size in half would require that the
length of the mesh be reduced by a factor of 2 to 3 in order for the computation
to fit within the available memory (128 Mb) on our workstation. With half the
distance of run, start-up transients would play a larger role. Moreover, a factor of
two increase in resolution is still not sufficient to resolve hot spots and would not
provide a test of convergence. For the moment, our confidence in the calculations
rests with interpreting the numerical results in terms of our physical understanding
of the wave structure.

When the ASCI computers and hydrocodes become available, increasing the
resolution by a factor of 5 should be possible. This would increase the memory
requirement by a factor of 25 and the computational effort by a factor of 125.
This “high resolution” would have 70 cells per grain diameter and would give a
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Figure 33: Comparison of stress profiles for 500m/s piston; blue is mono-dispersed
granular bed att = 1:6µs and red is modified regular array att = 1:4µs. Solid lines are
σxx and dashed lines areσequiv.

Figure 34:Comparison of temperature distribution behind wave (3< x < 4) driven by
500m/s piston. Blue is mono-dispersed granular bed att = 1:6µs and red is modified
regular array att = 1:4µs.
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reasonable chance of resolving dissipation in the vicinity of grain boundaries. In
addition, mesh refinement techniques would become possible since the interface
cells would represent a small enough fraction of the total number of cells.

For 3-D calculations these more powerful machines would still only allow for
the same resolution as we are currently using in 2-D. A medium resolution 3-D
calculation would require about the same computational effort as a high resolution
2-D calculation but would require another factor of 5 in memory. Even with the
limited resolution, 3-D simulations would give an idea of the effect of dimension-
ality and possibly suggest how the 2-D simulations could be scaled in order to
compare with physical experiments.

6 Homogenized Models

At this point it is natural to ask to what extent homogenized continuum models
can reproduce the behavior of compaction waves based on the underlying micro-
mechanical properties of a granular bed. The simulations show that mechanical
properties, such as wave speed and stress, are insensitive to the dissipative mech-
anism. The insensitive quantities are determined largely by the constitutive prop-
erties of the pure solid and the conservation laws,i.e., the porous Hugoniot locus.
Consequently, the simpleP-α model, when empirically calibrated to reproduce
the volume fraction, is able to determine the state behind a compaction wave.

Continuum models also make predictions for the wave profile. However, the
wave profile does depend on dissipative mechanisms, and quantities such as the
wave width, or the existence of a precursor can vary between models. The dissipa-
tive mechanisms become important for attempts to generalize a model in order to
account for the effect of hot spots on the reaction rate. Below we briefly comment
on a fluid model and a plasticity model that have been applied to porous materials
such as a granular bed.

6.1 Fluid Model

Two-phase fluid like models have been used to study DDT in granular explo-
sives. This is exemplified by the Baer-Nunziato model [30]. Its single-phase limit
can be used to describe the compaction of an inert granular bed. In this case the
model consists of the conservation equations for fluid flow, Eq. (2), theP-α form
for the equation of state

P(V;e;φ) = φPs(φV;e) (19)
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and a rate equation for the volume fraction

dφ
dt

=
φ(1�φ)

µc

�
Ps�β(φ)

�
; (20)

which enables the pressure to relax towards an equilibrium value. The equilib-
rium pressureβ(φ) is the inverse function of the equilibrium volume fraction in
theP-α model. The relaxation rate is controlled by the parameterµc, which has
dimensions of viscosity. The standard porous Hugoniot locus is a consequence of
these equations.

As is typical with relaxation systems, this model has a frozen sound speed and
an equilibrium sound speed. The frozen sound speed is just the sound speed of
the pure solid,cs. The equilibrium sound speedceq is lower than the frozen sound
speed and is determined byβ(φ) and the solid equation of statePs(Vs;e). Changes
in volume fraction are dissipative with the rate of entropy increase given by

T
dη
dt

=
�

Ps�β(φ)
�
V

dφ
dt

: (21)

As a consequence of the dissipation, the model predicts fully dispersed com-
paction waves with wave speeds betweenceq andcs, and partly dispersed waves
with wave speeds abovecs.

Two other properties of the dynamics of the volume fraction are noteworthy.
First, the volume fraction is not solely a function of pressure but is rate dependent.
Our simulations, Fig. 16, also show a rate dependence. Second, the time constant
for the volume fraction equation is proportional toµc=(Ps�β). Consequently the
width of a compaction wave decreases with wave strength.

Though the model captures many of the properties of a granular bed, several
qualitative features of compaction waves are not in agreement with our micro-
mechanical simulations. These are listed below:
(i) Weak compaction waves are not steady but spread out in time. This is the result
of the plastic work providing excess dissipation compared to that required by the
Hugoniot jump relations.
(ii) For weak compaction waves the average of the components of the stress devi-
ator do not vanish. Thus, a hydrostatic pressure does not adequately characterize
the stress.
(iii) Moderate strength compaction waves display an elastic precursor. The elastic
precursor is very dispersed, and the speed of the leading edge lies between the
bulk sound speedcs and the longitudinal sound speed.
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(iv) Since the porosity is determined by the yield strength, it is natural to associate
the compaction dissipation in Eq. (21) with the plastic work. However, the com-
paction work only dominates the dissipation for weak waves. The 500m/s piston
drives a compaction wave with a speed 2.1km/s, well below the bulk sound speed
of 2.65km/s. Yet the plastic work provides only about half of the dissipation when
the hydrodynamic model predicts a fully dispersed wave with all the dissipation
from compaction work. Other dissipative mechanisms imply that the wave width
is not determined solely by the compaction work.
(v) The width of a compaction wave does decrease with wave strength but satu-
rates at a value proportional to the grain size. To achieve this effectµc would have
to increase with pressure.

These discrepancies between the behavior of the hydrostatic model and the
underlying micro-mechanical description should not be surprising. Porosity under
compressive stress is made possible by material strength. The hydrostatic model
crudely accounts for material strength with the configuration pressureβ(φ) and
the compaction rate equation (20). It can only describe accurately those wave
properties which are not sensitive to the details of the dissipation mechanism.

6.2 Plasticity Model

An inherent limitation of the fluid model is that it doesn’t account for the ten-
sor character of either the stress or the strain. Experiments in powdered metals
show that the mean stress differs for hydrostatic and uniaxial compression [32,
Fig. 6]. A simple equilibrium volume fraction or configuration pressure can not
account for such a difference. In addition, for quasi-static compression experi-
ments [15], which are used to measure the configuration pressure of a granular
bed, wall friction is a 40% effect. This indicates that shear stress is significant and
should not be neglected.

The stress-strain plots in Figs. 21-23 suggest that the average behavior of a
granular bed might be described with a plasticity model. This has been proposed
before, see for example [33, 34, 35, 36, 32]. One reason it hasn’t been pursued is
the lack of experimental data. Compaction wave experiments typically measure
the velocity or the longitudinal component of stressσxx. It is a difficult experimen-
tal challenge to obtain data on the stress deviator in a compaction wave profile.

Plasticity models have been developed for metals and typically assume that
the plastic strain is volume preserving. This assumption is based on the underly-
ing microscopic view that crystal plasticity is due to the motion of dislocations.
The underlying structure of a granular material changes the plastic behavior. A
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plasticity model with the yield strength depending on pressure and an associative-
flow rule would give rise to a plastic strain with a volumetric component [32]. The
volumetric component of the plastic strain can be associated with the change in
porosity. Thus, the flow rule for the plastic strain would replace the rate equation
for the volume fraction in the fluid model, Eq. (20).

Such a plasticity model, which has been developed in the field of soil me-
chanics, is known as critical state theory. It has been applied to quasi-static de-
formations of granular materials [37] and to shear flow of a granular material
approximated by a rigid-perfectly plastic material [38]. For the latter case, there
are unstable flow regimes leading to shear layers. Dissipation along a shear layer
resulting from such a mechanism is a potential source of hot spots. This would
be worth pursuing since for an explosive it is important to understand all igni-
tion mechanisms in order to predict with confidence the outcome of an accident
scenario.

However, it should be noted that there are two significant complications with
applying a plasticity model to compaction waves in a porous material. First, there
is no conservation law for the plastic strain, and the porosity is not determined
by a simple algebraic equation. Consequently, the Hugoniot jump conditions are
not sufficient for determining the end state of a compaction wave. Instead one
would have to resolve the wave profile for partly compacted waves. The Hugoniot
conditions would be sufficient for strong fully compacted waves. The second
complication stems from the relaxation of the stress deviators shown in Figs. 11
and 21. Possibly this could be accounted for with a strain softening,i.e., lowering
the yield strength with plastic strain.

Micro-mechanical simulations are a means of obtaining further guidance for
developing better constitutive models of heterogeneous materials. The stress pro-
file and fluctuations of a compaction wave are determined by the dissipative mech-
anisms. The dissipative mechanisms depend on the underlying micro-structure.
Since fluctuations are important for reactive flow, reactive flow is more sensitive
to the micro-structure than is the flow of an inert material.

7 Summary and Conclusions

Compared to a homogeneous material, granular heterogeneities have several
effects on a shock wave. For inert materials, the dominant effect is the additional
degree of freedom associated with the solid volume fraction. This can be de-
scribed with simple fluid like models, such as theP–α model or the two-phase
Baer-Nunziato model. These models assume a hydrostatic stress, and postulate an
equilibrium volume fraction or a configuration pressure to account for the effect
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of material strength that enables a granular bed to support a non-zero porosity
under compressive stress. This allows the models to describe the volume change
associated with the crush-up of the pores in a compaction wave.

The end state of a compaction wave is largely determined by the porous Hugo-
niot locus. Fluid like models are adequate when the details of the wave structure
are not of interest. The structure of the wave, such as the wave width or an elastic
precursor, depends on the dissipative mechanism. Our micro-mechanical simula-
tions are aimed at describing the wave profile.

A major effect of heterogeneities, of importance for the initiation of an explo-
sive, is the temperature fluctuations or hot-spot distribution. The hot-spot distribu-
tion is sensitive to the dissipative mechanism. Our compaction wave simulations
have three dissipative mechanisms; plastic work, shear viscosity and artificial bulk
viscosity. Plastic work results from the deformation of grains needed to decrease
the porosity. Shear viscosity mocks up the effect of friction between grains and
along closed cracks. Artificial viscosity is needed for numerical stability of strong
shocks. For the range of piston velocities we studied, the dispersive effects of the
heterogeneities spread the compaction wave by a much larger amount than would
be generated by the artificial viscosity in a homogeneous material.

The yield strength determines the crush-up pressure needed to fully compact a
granular bed. For HMX, the yield strength inferred from hardness measurements
is 0.13GPa and from wave profiles in a single crystal is 0.3GPa. Very likely the
yield strength is affected by work hardening. This is an important quantity that
should be experimentally determined more accurately.

For weak partly compacted waves, plastic work is the dominate dissipation
mechanism in the wave profile. Plastic work is concentrated around the contact
surfaces between grains and leads to hot spots. For HMX, at full compaction the
plastic work is sufficient to bring hot spots up to the melting temperature. It is
important to note that the melting temperature increases with pressure and that
the Arrhenius reaction rate is much larger for the liquid phase than for the solid
phase.

The simulations show that a 500m/s piston gives rise to hot spots with tem-
peratures upwards of 600K. These hot spots would have an induction time on the
order of 100µs. This compares with a bulk temperature of only 425K, which is
too low for appreciable burning to occur. Plastic work is limited by melting. Other
dissipative mechanisms are the dominate source for hot spots above the melting
temperature. Very likely hydrodynamic void collapse, studied in connection with
shock initiation [2, Sec. 3.3], becomes the dominate source of hot spots as the
wave strength is increased.
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Though our simulations display temperature fluctuations, the limited resolu-
tion prevents us from presenting quantitative results. The qualitative trends are
physically plausible, and the hot spots are in the regime (maybe slightly low)
that would result in burning and affect ignition sensitivity. Computations on the
more powerful ASCI computers should enable hot spots to be resolved and allow
for quantitative results on the temperature distribution. This is a prerequisite for
including burn in the simulations. Also, the ASCI computers should allow for
3-D simulations, which are necessary to understand the effect of dimensionality
needed to compare high resolution 2-D simulations with physical experiments.

Even with adequate resolution, a critical aspect of the simulations is the dissi-
pative mechanisms included in the numerical model. One uncertainty arises from
the coefficient of shear viscosity used to mock up frictional heating at grain inter-
faces. Properly accounting for frictional heating would require a good treatment of
shear layers. In addition, the effect of crystal orientation and rate dependent plas-
ticity could be incorporated. Rate dependent plasticity would introduce another
time scale and could lead to a grain size dependence of the hot-spot distribution
for weak waves resulting from the plastic work.

The long-term goal of this work is to develop an improved burn model for
continuum codes. This is our first attempt at using micro-mechanical simulations
to determine the hot-spot distribution from compaction waves and how it is af-
fected by wave stength. Hot spots are sub-grain in size and require high resolution
simulations. In addition, fluctuations are sensitive to the dissipative mechanism.
Though plastic work is clearly important for weak waves, other dissipative mech-
anisms may also be important. Micro-mechanical simulations can also provide
guidance for developing constitutive models of heterogeneous materials.
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Appendix I: Mie-Gr üneisen Equation of State

The Mie-Grüneisen equation of state has the form

P(V;e) = Pref(V)+
Γ
V

�
e�eref(V)

�
(22)

whereΓ is the Grüneisen coefficient. Assuming thatΓ is independent ofeamounts
to linearizing the pressure ine about the reference curve.

For many solids, high pressure data is available for the principal Hugoniot.
Consequently, the principal Hugoniot is frequently chosen as the reference curve.
It follows from the shock jump conditions:

up

us
= 1� V

V0
; (23)

Ph = P0+ρ0upus ; (24)

eh =
1
2
(Ph+P0) � (V0�V) ; (25)

whereus is the shock velocity andup is the particle velocity. These jump con-
ditions together with aus(up) relation determinePh(V) andeh(V). Frequently,
a linear relation,us = c0+sup, is a good approximation for pressures below the
bulk modulus,ρ0c2

0.
The temperature and energy on the initial isentrope are determined by inte-

grating the ODEs

d
dV

 
T

e

!
=�

 
ΓT
V

P

!
: (26)

The temperature as a function ofV ande is based on a constant specific heat

T(V;e) = Ts(V)+
e�es(V)

CV
: (27)

Finally, the thermal effect of melting can be incorporated by modifying the spe-
cific energy

ẽ=

(
e�max[Q;Cv � (T�Tm)] if T > Tm,

e otherwise,
(28)

whereTm is the melting temperature andQ is the latent heat of melting. The
pressure and temperature are then recomputed withe replace by ˜e in Eqs. (22)
and (27). The change in volume associated with melting is neglected.
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Appendix II: Elastic-Plastic Model

The strength model determines the stress deviatorσ0 = σ� 1
3Tr(σ)I . In the

range of interest we assume that (i) the stress depends only on the elastic strain,
(ii) the material is isotropic, and (iii) the shear modulus is approximately constant.
The stress rate can be expressed as

d
dt

σ0 = 2G
� d

dt
ε0� d

dt
ε0p
�
; (29)

whereε is the total strain andεp is the plastic strain. The plastic strain rate is
based on von Mises yield condition

3
2
jjσ0jj2 �Y2 ; (30)

and the associated flow rule

d
dt

ε0p = λσ0 : (31)

For rate independent plasticity, the factorλ is determined uniquely from the yield
condition Eq. (30).
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